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Introduction
The load flow equations written by means of the grid nodal model 
defines a non-convex set of constraints for the OPF.

ҧ𝐈 = ഥ𝐘 ഥ𝐕  Kirchoff’s laws (KVL and KCL) applied to the whole grid;

ഥ𝑆𝑖 = 𝑉𝑖𝐼𝑖 nodal power injection ∀𝑖 = 1, … , 𝑠;

σ𝑖=1
𝑠 ഥ𝑆𝑖 = 0 power balance over the whole grid.

Recall the load flow equations in polar coordinates

or in rectangular coordinates
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The DC approximation 5

The non-convexity of the OPF constraints can be addressed by 
replacing them with a set of approximated ones. 

The simplest one is the DC-approximation we have already seen in 
the module on the load flow. 

IMPORTANT: any approximation of the OPF constraints implies that 
the solution of the problem does not satisfy the load flow equations. 
So, the violation of the constraints (may) still exist if we compute the 
load flow from the obtained solution of the approximated OPF.



 For high voltage systems, the longitudinal resistances of the line conductors and 

copper losses of transformers are neglected with respect to the series reactance of 
the lines and transformers (note that this is not true in distribution systems).

o Acceptable when the calculation of losses is waived.

o
𝑥

𝑟
≈ 10 for transmission lines,

o
𝑥

𝑟
≈ 50 for transformers 

o In both cases ҧ𝑧 ≈ 𝑗𝑥

▪ The transverse admittances of the network components are neglected. 

o The shunt capacitances of the lines generate reactive power especially in long 
lines at very high voltage; 

o The currents flowing through the shunt capacitances are mainly associated to 

the reactive power balance of the line and, in high voltage systems, they are 
related to the difference of voltages magnitudes at the extremes of the lines.

o In high voltage systems, however, shunt capacitances have a little influence on 
the active power flows that mainly depend on the differences between the 

phases of the voltage phasors at the line ends. 

o The shunt conductance, which take into account the corona and insulators 
losses of the lines and the iron-losses transformers, may assumed small and, in the 

DC approximation, negligible.
With these simplifications, the grid model is only composed by longitudinal inductive 

reactances (i.e., the equivalent series reactance of lines and transformers).

6The DC approximation (ref. lecture 2.4)



▪ ത𝑉𝑖 , ത𝑉𝑙 are the voltages phasors at the extremities

▪ 𝜃𝑖 is the argument of ത𝑉𝑖 and 𝜃𝑙 the argument of ത𝑉𝑙, 𝜃𝑖𝑙 = 𝜃𝑖 − 𝜃𝑙

▪ 𝑥𝑖𝑙 the reactance of the branch 𝑖𝑙

In view of the above, the active power through the branch 𝑖𝑙 is:

𝑃𝑖𝑙 =
3𝑉𝑖𝑉𝑙

𝑥𝑖𝑙
sin 𝜃𝑖𝑙

Further hypotheses of the DC approximation are the following:

▪ the modules of the nodal voltages all equal to 1 𝑝𝑢

▪ the difference 𝜃𝑖 − 𝜃𝑙 is small, therefore 𝑠𝑖𝑛 𝜃𝑖 − 𝜃𝑙 ≈ 𝜃𝑖 − 𝜃𝑙

Therefore, we have

𝑃𝑖𝑙 =
1

𝑥𝑖𝑙
𝜃𝑖𝑙

As a consequence, the injection of power in a generical node 𝑖 is :

𝑃𝑖 = ෍

𝑙≠𝑖

𝑃𝑖𝑙 =
𝜃𝑖1

𝑥𝑖1
+ ⋯

𝜃𝑖𝑠

𝑥𝑖𝑠

(note that the voltage angles are known up to one phase shift, so we need to take 

one node, say 𝑘, as reference and set 𝜃𝑘 = 0 at this node), so we have that:

𝑃𝑖 =
1

𝑥𝑖1
+ ⋯

1

𝑥𝑖𝑠
𝜃𝑖 − ෍

𝑙=1
𝑙≠𝑖

𝑠
1

𝑥𝑖𝑙
𝜃𝑙 = ෍

𝑙=1

𝑠

𝐵𝑖𝑙𝜃𝑙

7The DC approximation (ref. lecture 2.4)



The following linear matrix equation is obtained for the whole network:

𝑃 = 𝐵 × 𝜃

where [𝐵] and the “susceptance matrix” of the entire transmission network (in pu). 

As seen before, the diagonal terms 𝐵𝑖𝑖 of [𝐵] consist of the sum of the (longitudinal) 
susceptance of all sides converging at the 𝑖-th node

The terms on the diagonal 𝐵𝑖𝑖 are positive if the susceptance are inductive while the 
other terms are all negative, provided that the susceptance are inductive, and meet 

condition

𝐵𝑙𝑘 = 𝐵𝑘𝑙

8The DC approximation (ref. lecture 2.4)



Let’s apply the DC load flow approximation to our 3-bus example.

Cost function: σ𝑖=1,3 𝐶𝑖 𝑃𝑔𝑖

Decision variables:

▪ 𝑃𝑔2
, 𝑃𝑔3

, 𝑄𝑔2
, 𝑄𝑔3

Constraints:

▪ DC grid’s load flow equations

▪ Nodal voltage magnitudes within bounds

▪ Branches powers below max

▪ Generators 𝑃𝑚𝑖𝑛 , 𝑃𝑚𝑎𝑥 𝑎𝑛𝑑 𝑄𝑚𝑖𝑛 , 𝑄𝑚𝑎𝑥 .
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1 2

3

𝑔1

𝑔3

𝑔2

𝑃𝑙1
= 100 𝑀𝑊 𝑃𝑙2

= 100 𝑀𝑊

𝑃𝑙3
= 500 𝑀𝑊

𝑌2,3 = 1.88 − 𝑗11.1 𝑝𝑢

𝑌1,2 = 3.75 − 𝑗22.2 𝑝𝑢

𝑌1,3 = 1.88 − 𝑗11.1 𝑝𝑢

Quantity Value

𝑃𝑔𝑖

𝑚𝑖𝑛, 𝑃𝑔𝑖

𝑚𝑎𝑥 0 ÷ 400 𝑀𝑊

𝑄𝑔𝑖
𝑚𝑖𝑛, 𝑄𝑔𝑖

𝑚𝑎𝑥 −80 ÷ +80 𝑀𝑉𝑎𝑟

𝐶1, 𝐶2, 𝐶3 15, 1, 225 𝐶𝐻𝐹/𝑀𝑊ℎ

𝑆12
𝑚𝑎𝑥, 𝑆23

𝑚𝑎𝑥 , 𝑆31
𝑚𝑎𝑥 200, 200, 300 𝑀𝑊 𝑀𝑉𝐴

𝑆𝑏 = 100𝑀𝑊
𝑉𝑏 = 220𝑘𝑉

The DC approximation



Let’s apply the DC load flow approximation to our 3-bus example.

𝑃1 = 22.2 𝜃1 − 𝜃2 + 11.1(𝜃1 − 𝜃3)

𝑃2 = 22.2 𝜃2 − 𝜃1 + 11.1(𝜃2 − 𝜃3)

𝑃3 = 11.1 𝜃3 − 𝜃1 + 11.1 𝜃3 − 𝜃2

𝑃1 = 𝑃𝑔1
+ 𝑃𝑙1

𝑃2 = 𝑃𝑔2
+ 𝑃𝑙2

𝑃3 = 𝑃𝑔3
+ 𝑃𝑙3

If nodal injections 𝑃1, 𝑃2, 𝑃3  are given
such that 𝑃1 + 𝑃2 + 𝑃3 = 0, we can solve
for 𝜃.

Let us set 𝜃1 = 0 (reference bus = slack bus). 

The branch flows are derived from 𝜃 as:

𝑃1,2 = 22.2 −𝜃2

𝑃1,3 = 11.1 −𝜃3

𝑃2,3 = 11.1 𝜃2 − 𝜃3
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1 2

3

𝑔1

𝑔3

𝑔2

𝑃𝑙1
= 100 𝑀𝑊 𝑃𝑙2

= 100 𝑀𝑊

𝑃𝑙3
= 500 𝑀𝑊

𝑌2,3 = 1.88 − 𝑗11.1 𝑝𝑢

𝑌1,2 = 3.75 − 𝑗22.2 𝑝𝑢

𝑌1,3 = 1.88 − 𝑗11.1 𝑝𝑢

𝑆𝑏 = 100𝑀𝑊
𝑉𝑏 = 220𝑘𝑉

The DC approximation



The OPF with the DC approximation has linear constraints, so the 
feasible set of the problem is convex, and a convex cost function. So, it 
is a convex optimisation problem.

min
𝑃𝑔2 ,𝑃𝑔3

෍

𝑖=1

3

𝐶𝑖 𝑃𝑔𝑖

𝑠. 𝑡.

𝑃1 = 22.2 −𝜃2 + 11.1(−𝜃3)

𝑃2 = 22.2 𝜃2 + 11.1(𝜃2 − 𝜃3)

𝑃3 = 11.1 𝜃3 + 11.1 𝜃3 − 𝜃2

𝑃1 = 𝑃𝑔1
+ 𝑃𝑙1

𝑃2 = 𝑃𝑔2
+ 𝑃𝑙2

𝑃3 = 𝑃𝑔3
+ 𝑃𝑙3

𝑃𝑔𝑖

𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖
≤ 𝑃𝑔𝑖

𝑚𝑎𝑥, 𝑖 = 1,2,3

−𝑃1,2
𝑚𝑎𝑥≤ 22.2 0 − 𝜃2 ≤ 𝑃1,2

𝑚𝑎𝑥

−𝑃1,3
𝑚𝑎𝑥 ≤ 11.1 0 − 𝜃3 ≤ 𝑃1,3

𝑚𝑎𝑥

−𝑃2,3
𝑚𝑎𝑥≤ 11.1 𝜃2 − 𝜃3 ≤ 𝑃2,3

𝑚𝑎𝑥

−𝜋 ≤ 𝜃𝑖≤ 𝜋, 𝑖 = 2,3
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1 2

3

𝑔1

𝑔3

𝑔2

𝑃𝑙1
= 100 𝑀𝑊 𝑃𝑙2

= 100 𝑀𝑊

𝑃𝑙3
= 500 𝑀𝑊

𝑌2,3 = −𝑗11.1 𝑝𝑢

𝑌1,2 =  −𝑗22.2 𝑝𝑢

𝑌1,3 = −𝑗11.1 𝑝𝑢

𝑆𝑏 = 100𝑀𝑊
𝑉𝑏 = 220𝑘𝑉

The DC approximation

Quantity Value

𝑃𝑔𝑖
𝑚𝑖𝑛, 𝑃𝑔𝑖

𝑚𝑎𝑥 0 ÷ 400 𝑀𝑊

𝐶1, 𝐶2, 𝐶3 15, 1, 225 𝐶𝐻𝐹/𝑀𝑊ℎ

𝑆12
𝑚𝑎𝑥 , 𝑆23

𝑚𝑎𝑥 , 𝑆31
𝑚𝑎𝑥 200, 200, 300 𝑀𝑊



Solution
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1 2

3

𝑔1

𝑔3

𝑔2

𝑃𝑙1
= 100 𝑀𝑊 𝑃𝑙2

= 100 𝑀𝑊

𝑃𝑙3
= 500 𝑀𝑊

𝑌2,3 = −𝑗11.1 𝑝𝑢

𝑌1,2 =  −𝑗22.2 𝑝𝑢

𝑌1,3 = −𝑗11.1 𝑝𝑢

𝑆𝑏 = 100𝑀𝑊
𝑉𝑏 = 220𝑘𝑉

The DC approximation

Quantity Value

𝑃𝑔𝑖
𝑚𝑖𝑛, 𝑃𝑔𝑖

𝑚𝑎𝑥 0 ÷ 400 𝑀𝑊

𝐶1, 𝐶2, 𝐶3 15, 1, 225 𝐶𝐻𝐹/𝑀𝑊ℎ

𝑆12
𝑚𝑎𝑥 , 𝑆23

𝑚𝑎𝑥 , 𝑆31
𝑚𝑎𝑥 200, 200, 300 𝑀𝑊

𝜃3 = −210.23 𝑚𝑟𝑎𝑑
𝜆𝑃3

= 225 𝐶𝐻𝐹/𝑀𝑊ℎ

𝑃𝑔3
= 66.67 𝑀𝑊

𝜃2 = −30.03 𝑚𝑟𝑎𝑑
𝜆𝑃2

= 1 𝐶𝐻𝐹/𝑀𝑊ℎ

𝑃𝑔2
= 233.33 𝑀𝑊

𝜃1 = 0 𝑚𝑟𝑎𝑑
𝜆𝑃1

= 75.67 𝐶𝐻𝐹/𝑀𝑊ℎ

𝑃𝑔1
= 400𝑀𝑊

𝑃2,3 = 200 𝑀𝑊𝑃1,3 = 233.33𝑀𝑊

𝑃1,2 = 66.67 𝑀𝑊

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡:  21233 𝐶𝐻𝐹/ℎ



Solution
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1 2

3

𝑔1

𝑔3

𝑔2

𝑃𝑙1
= 100 𝑀𝑊 𝑃𝑙2

= 100 𝑀𝑊

𝑃𝑙3
= 500 𝑀𝑊

𝑌2,3 = −𝑗11.1 𝑝𝑢

𝑌1,2 =  −𝑗22.2 𝑝𝑢

𝑌1,3 = −𝑗11.1 𝑝𝑢

𝑆𝑏 = 100𝑀𝑊
𝑉𝑏 = 220𝑘𝑉

The DC approximation

Quantity Value

𝑃𝑔𝑖
𝑚𝑖𝑛, 𝑃𝑔𝑖

𝑚𝑎𝑥 0 ÷ 400 𝑀𝑊

𝐶1, 𝐶2, 𝐶3 15, 1, 225 𝐶𝐻𝐹/𝑀𝑊ℎ

𝑆12
𝑚𝑎𝑥 , 𝑆23

𝑚𝑎𝑥 , 𝑆31
𝑚𝑎𝑥 2000, 2000, 3000 𝑀𝑊

𝜃3 = −216.24 𝑚𝑟𝑎𝑑
𝜆𝑃3

= 15 𝐶𝐻𝐹/𝑀𝑊ℎ

𝑃𝑔3
= 0 𝑀𝑊

𝜃2 = +18.03 𝑚𝑟𝑎𝑑
𝜆𝑃2

= 15 𝐶𝐻𝐹/𝑀𝑊ℎ

𝑃𝑔2
= 400 𝑀𝑊

𝜃1 = 0 𝑚𝑟𝑎𝑑
𝜆𝑃1

= 15 𝐶𝐻𝐹/𝑀𝑊ℎ

𝑃𝑔1
= 300𝑀𝑊

𝑃2,3 = 200 𝑀𝑊𝑃1,3 = 233.33𝑀𝑊

𝑃1,2 = 66.67 𝑀𝑊

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡:  13767 𝐶𝐻𝐹/ℎ

Lines power transmission limits

x10



From this numerical example, we can conclude that the DC OPF 
problem produces results that are qualitatively like the solution of the 
original non-convex AC-OPF (see lecture 4.1), with the main difference 
that active power losses are neglected as well as voltage magnitudes 
variations and reactive powers.

Remember that these considerations are valid for high voltage power 
systems where the DC approximation may hold. In power distribution 
systems (where the longitudinal impedance of branches is more 
resistive than inductive), or in the case where reactive power flows 
have to be considered along with voltage constraints, the DC-OPF 
cannot be used.

14The DC approximation



Outline

Introduction

The DC approximation

Linearized OPF

Sequential linear programming OPF



Let us consider a grid with 𝑠 buses where the slack is located at bus 1.

As always, we can express the generic power at bus 𝑖 as

𝑆𝑖 = 𝑉𝑖 ෍

𝑗=1

𝑠

𝑉𝑗𝑌𝑖𝑗 , 𝑖 = 1, … , 𝑠

Given that we have fixed the voltage at the slack

𝑉1 =1𝑝𝑢, arg 𝑉1 = 0

If we indicate with 𝐒 = 𝑆2, … , 𝑆𝑠

𝑇
, 𝐕 = 𝑉2, … , 𝑉𝑠

𝑇
 the arrays of power 

injections (i.e., only PQ nodes compose the LF boundary conditions) 
and voltages in all the nodes except the slack, we can write the load 
flow problem in a compact form as follows:

𝐒 = 𝑓 𝐕 , 𝑆1 = 𝑓1 𝐕

where we compute (𝐕, 𝑆1) when 𝐒 is given (e.g. when we fix the nodal 
power injections and slack voltage) from the numerical inversion of 𝑓.

16Linearized OPF



Let us assume that we know the state of the system (for instance from 

a state estimator). This means that we know 𝐕
∗
 for a given 𝐒

∗
. 

Therefore, we can express 𝐒 in Taylor series truncated at the first order:

𝐒 = 𝐒
∗

+ ∇𝑓 𝐕
∗

𝐕 −𝐕
∗

where ∇𝑓 𝐕
∗

 is the Jacobian of 𝑓 computed in 𝐕
∗
.

The above equation is (trivially) linear and can be used to 
approximate the load flow non-convex constraints and make them 
convex.

IMPORTANT: remember that this approximation is accurate if 𝐒 and 

𝐕 are close to 𝐒
∗
and 𝐕

∗
.

17Linearized OPF



It is interesting to note that ∇𝑓 𝐕
∗

 is composed by the partial 

derivatives of the nodal power injections with respect to the nodal 

voltages. In other words, ∇𝑓 𝐕
∗

is the Jacobian of the Newton-

Raphson solution of the load flow problem.

Let’s write it for the case of polar coordinates.

𝑃2

…
𝑃𝑠

𝑄2

…
𝑄𝑠

≈

𝑃2
∗

…
𝑃𝑠

∗

𝑄2
∗

…
𝑄𝑠

∗

+

𝜕𝑃2

𝜕𝑉2
⋯

𝜕𝑃2

𝜕𝜃𝑠

⋮ ⋱ ⋮
𝜕𝑄𝑠

𝜕𝑉2
⋯

𝜕𝑄𝑠

𝜕𝜃𝑠 𝐕∗,𝜽∗

𝑉2 − 𝑉2
∗

⋮
𝑉𝑠 − 𝑉𝑠

∗

𝜃2 − 𝜃2
∗

⋮
𝜃𝑠 − 𝜃𝑠

∗

18Linearized OPF

∇𝑓 𝐕
∗

= 𝐉 𝐕∗, 𝜽∗



By assuming that the load flow converges in the surrounding of the 

state 𝐕
∗
 for a given 𝐒

∗
, we have that the the Jacobian ∇𝑓 𝐕

∗
 can be 

inverted. Therefore, we can also express the nodal voltage variations 
as a function of the variations of the nodal power injections:

𝑉2 − 𝑉2
∗

⋮
𝑉𝑠 − 𝑉𝑠

∗

𝜃2 − 𝜃2
∗

⋮
𝜃𝑠 − 𝜃𝑠

∗

=

𝜕𝑃2

𝜕𝑉2
⋯

𝜕𝑃2

𝜕𝜃𝑠

⋮ ⋱ ⋮
𝜕𝑄𝑠

𝜕𝑉2
⋯

𝜕𝑄𝑠

𝜕𝜃𝑠

−1

𝐕∗,𝜽∗

𝑃2 −𝑃2
∗

⋮
𝑃𝑠 −𝑃𝑠

∗

𝑄2 − 𝑄2
∗

⋮
𝑄𝑠 − 𝑄𝑠

∗

Where the components of the inverted Jacobian 𝐉−𝟏 𝐕∗, 𝜽∗  are those 
that we have already computed in the lecture 2.4.

19Linearized OPF

𝐉−𝟏 𝐕∗, 𝜽∗



In the OPF there is the need to compute the active and reactive 

powers at the slack (i.e., 𝑆1 = 𝑓1 𝐕 ). This computation is rather simple 

since

𝑆1 = 𝑃1 + 𝑗𝑄1 = 𝑉1 ෍

𝑗=1

𝑠

𝑉𝑗𝑌𝑖𝑗 = ෍

𝑗=1

𝑠

𝑉1𝑉𝑗𝑌𝑖𝑗𝑒𝑗 𝜃1−𝜃𝑗−𝛾𝑖𝑙

𝑃1 = ෍

𝑗=1

𝑠

𝑉1𝑉𝑗𝑌𝑖𝑗𝑐𝑜𝑠 𝜃1 − 𝜃𝑗 − 𝛾𝑖𝑙

𝑄1 = ෍

𝑗=1

𝑠

𝑉1𝑉𝑗𝑌𝑖𝑗𝑠𝑖𝑛 𝜃1 − 𝜃𝑗 − 𝛾𝑖𝑙

where 𝑉1 =1𝑝𝑢, arg 𝑉1 = 𝜃1 = 0, or 𝑉1 = 1 + 𝑗0 𝑝𝑢. Therefore, we got:

𝑃1

𝑄1
≈

𝑃1
∗

𝑄1
∗ +

𝜕𝑃1

𝜕𝑉2
…

𝜕𝑃1

𝜕𝜃𝑠

𝜕𝑄1

𝜕𝑉2
…

𝜕𝑄1

𝜕𝜃𝑠 𝐕∗,𝜽∗

𝑉2 − 𝑉2
∗

⋮
𝑉𝑠 − 𝑉𝑠

∗

𝜃2 − 𝜃2
∗

⋮
𝜃𝑠 − 𝜃𝑠

∗
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Therefore, we can write the approximated linear OPF as follows

min
𝑃𝑔2 ,…,𝑃𝑔𝑠 ,𝑄𝑔2 ,…,𝑄𝑔𝑠

෍

𝑖=1

3

𝐶𝑖 𝑃𝑔𝑖
, 𝑄𝑔𝑖

𝑠. 𝑡.
𝑃2

…
𝑃𝑠

𝑄2

…
𝑄𝑠

≈

𝑃2
∗

…
𝑃𝑠

∗

𝑄2
∗

…
𝑄𝑠

∗

+

𝜕𝑃2

𝜕𝑉2
⋯

𝜕𝑃2

𝜕𝜃𝑠

⋮ ⋱ ⋮
𝜕𝑄𝑠

𝜕𝑉2
⋯

𝜕𝑄𝑠

𝜕𝜃𝑠 𝐕∗,𝜽∗

𝑉2 − 𝑉2
∗

⋮
𝑉𝑠 − 𝑉𝑠

∗

𝜃2 − 𝜃2
∗

⋮
𝜃𝑠 − 𝜃𝑠

∗

𝑃1

𝑄1
≈

𝑃1
∗

𝑄1
∗ +

𝜕𝑃1

𝜕𝑉2
…

𝜕𝑃1

𝜕𝜃𝑠

𝜕𝑄1

𝜕𝑉2
…

𝜕𝑄1

𝜕𝜃𝑠 𝐕∗,𝜽∗

𝑉2 − 𝑉2
∗

⋮
𝑉𝑠 − 𝑉𝑠

∗

𝜃2 − 𝜃2
∗

⋮
𝜃𝑠 − 𝜃𝑠

∗

𝑃𝑖 = 𝑃𝑔𝑖
+ 𝑃𝑙𝑖

, 𝑖 = 1, … , 𝑠

𝑄𝑖 = 𝑄𝑔𝑖
+ 𝑄𝑙𝑖

, 𝑖 = 1, … , 𝑠

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖

≤ 𝑃𝑔𝑖
𝑚𝑎𝑥, 𝑖 = 1, … , 𝑔

𝑄𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖

≤ 𝑄𝑔𝑖
𝑚𝑎𝑥, 𝑖 = 1, … , 𝑔

𝑉1 =1𝑝𝑢, arg 𝑉1 = 𝜃1 = 0;

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥, 𝑖 = 2, … , 𝑠

−𝜋 ≤ 𝜃𝑖 ≤ 𝜋, 𝑖 = 2, … , 𝑠
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This is a linear (so, convex) OPF.
Note that in this approximated OPF 

the constraints on the branch flows 

are not included (see next slides how 

to fix this problem).



We can derive a simpler version of the problem by observing that the 

components of the inverted Jacobian 𝐉−𝟏 𝐕∗, 𝜽∗  are those that we 
have already computed in the lecture on the lecture 2.4 (we recall 
that 𝒩 is the set of PQ buses, ℋ the set of slack buses and that 
1,2, … , 𝑠 = ℋ ∪ 𝒩, ℋ ∩ 𝒩 = ∅).

𝟏 𝑖=𝑙 =
𝜕𝑉𝑖

𝜕𝑃𝑙
෍

𝑗∈ℋ∪𝒩

ത𝑌𝑖𝑗
ത𝑉∗

𝑗 + 𝑉∗
𝑖

෍

𝑗∈𝒩

ത𝑌𝑖𝑗

𝜕 ത𝑉𝑗

𝜕𝑃𝑙

−𝑗𝟏 𝑖=𝑙 =
𝜕𝑉𝑖

𝜕𝑄𝑙
෍

𝑗∈ℋ∪𝒩

ത𝑌𝑖𝑗
ത𝑉∗

𝑗 + 𝑉∗
𝑖

෍

𝑗∈𝒩

ത𝑌𝑖𝑗

𝜕 ത𝑉𝑗

𝜕𝑄𝑙

From the above complex sensitivity coefficients, we can compute the nodal 

voltage module sensitivities:

𝐾𝑃,𝑉
𝑖𝑙 =

𝜕 ത𝑉𝑖

𝜕𝑃𝑙
=

1

ത𝑉𝑖
ℜ 𝑉𝑖

𝜕 ത𝑉𝑖

𝜕𝑃𝑙

𝐾𝑄,𝑉
𝑖𝑙 =

𝜕 ത𝑉𝑖

𝜕𝑄𝑙
=

1

ത𝑉𝑖
ℜ 𝑉𝑖

𝜕 ത𝑉𝑖

𝜕𝑄𝑙

Note that: ത𝑉𝑖 = 𝑉𝑖
′ + 𝑗𝑉𝑖

′′, ത𝑉𝑖 = 𝑉𝑖
′ 2

+ 𝑉𝑖
′′ 2

,
𝜕 ഥ𝑉𝑖

𝜕𝑃𝑙
=

𝜕 𝑉𝑖
′ 2

+ 𝑉𝑖
′′ 2

𝜕𝑃𝑙
=

1

2 𝑉𝑖
′ 2

+ 𝑉𝑖
′′ 2

𝜕 𝑉𝑖
′ 2

+ 𝑉𝑖
′′ 2

𝜕𝑃𝑙
=

1

𝑉𝑖
′ 2

+ 𝑉𝑖
′′ 2

𝑉𝑖
′ 𝜕𝑉𝑖

′

𝜕𝑃𝑙
+ 𝑉𝑖

′′ 𝜕𝑉𝑖
′′

𝜕𝑃𝑙
=

1

ഥ𝑉𝑖
ℜ 𝑉𝑖

𝜕ഥ𝑉𝑖

𝜕𝑃𝑙
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It is interesting to note that the operational constraints on the nodal 

voltage refers to their modules: 𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥 , 𝑖 = 2, … , 𝑠.

Therefore, thanks to the sensitivity coefficients 𝐾𝑃
𝑖𝑙 =

𝜕 ഥ𝑉𝑖

𝜕𝑃𝑙
 and 𝐾𝑄

𝑖𝑙 =
𝜕 ഥ𝑉𝑖

𝜕𝑄𝑙
 

we may write the constraints on the voltage modules as follows:

𝑉2 − 𝑉2
∗

⋮
𝑉𝑠 − 𝑉𝑠

∗
= 𝐊𝑃,𝑉

𝑃2 −𝑃2
∗

⋮
𝑃𝑠 −𝑃𝑠

∗
+ 𝐊𝑄,𝑉

𝑄2 −𝑄2
∗

⋮
𝑄𝑠 −𝑄𝑠

∗

Note that in the above equation there is a slight abuse of 
nomenclature, where 𝑉𝑖 = ത𝑉𝑖 .
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Furthermore, from the knowledge of the complex voltage sensitivity 

coefficients associated to the complex nodal voltages (i.e. 
𝜕 ഥ𝑉𝑖

𝜕𝑃𝑙
 and 

𝜕 ഥ𝑉𝑖

𝜕𝑄𝑙
), 

we can easily derive the sensitivity coefficients for the branch currents 
as follows.
Let’s express the branch current at bus 𝑖 towards bus 𝑗 of the generic 
branch 𝑖𝑗:

𝐼𝑖𝑗 = 𝑌𝑖𝑉𝑖+ 𝑌𝑖𝑗 𝑉𝑖 − 𝑉𝑗

Therefore, we have:

𝜕 ҧ𝐼𝑖𝑗

𝜕𝑃𝑙
= 𝑌𝑖

𝜕 ത𝑉𝑖

𝜕𝑃𝑙
+ 𝑌𝑖𝑗

𝜕 ത𝑉𝑖

𝜕𝑃𝑙
−

𝜕 ത𝑉𝑗

𝜕𝑃𝑙

𝜕 ҧ𝐼𝑖𝑗

𝜕𝑄𝑙
= 𝑌𝑖

𝜕 ത𝑉𝑖

𝜕𝑄𝑙
+ 𝑌𝑖𝑗

𝜕 ത𝑉𝑖

𝜕𝑄𝑙
−

𝜕 ത𝑉𝑗

𝜕𝑄𝑙
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𝑌𝑖𝑗

𝑌𝑖 𝑌𝑗

𝑉𝑖 𝑉𝑗

𝑆𝑖𝑗, 𝐼𝑖𝑗



From the complex sensitivity coefficients of the branch currents, we 
can easily compute the sensitivity of the branch current modules as:

𝐾𝑃,𝐼
𝑖𝑙 =

𝜕 ҧ𝐼𝑖𝑗

𝜕𝑃𝑙
=

1

ҧ𝐼𝑖𝑗

ℜ 𝐼 𝑖𝑗

𝜕 ҧ𝐼𝑖𝑗

𝜕𝑃𝑙

𝐾𝑄,𝐼
𝑖𝑙 =

𝜕 ҧ𝐼𝑖𝑗

𝜕𝑄𝑙
=

1

ҧ𝐼𝑖𝑗

ℜ 𝐼 𝑖𝑗

𝜕 ҧ𝐼𝑖𝑗

𝜕𝑄𝑙

and express the variations of the branch current modules as:

𝐈𝑖𝑗 − 𝐈𝑖𝑗
∗ = 𝐊𝑃,𝐼

𝑃2 −𝑃2
∗

⋮
𝑃𝑠 −𝑃𝑠

∗
+ 𝐊𝑄,𝐼

𝑄2 −𝑄2
∗

⋮
𝑄𝑠 −𝑄𝑠

∗
 

Where 𝐈𝑖𝑗  is the vector of the branch currents modules and 𝐈𝑖𝑗
∗  the 

same vector computed in correspondence of the state of the grid.
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Therefore, we can write the approximated linear OPF (L-OPF)as follows

min
𝑃𝑔2 ,…,𝑃𝑔𝑠 ,𝑄𝑔2 ,…,𝑄𝑔𝑠

෍

𝑖=1

3

𝐶𝑖 𝑃𝑔𝑖
, 𝑄𝑔𝑖

𝑠. 𝑡.

𝑉2 − 𝑉2
∗

⋮
𝑉𝑠 − 𝑉𝑠

∗
= 𝐊𝑃,𝑉

𝑃2 −𝑃2
∗

⋮
𝑃𝑠 −𝑃𝑠

∗
+ 𝐊𝑄,𝑉

𝑄2 −𝑄2
∗

⋮
𝑄𝑠 −𝑄𝑠

∗

𝐈𝑖𝑗 − 𝐈𝑖𝑗
∗ = 𝐊𝑃,𝐼

𝑃2 −𝑃2
∗

⋮
𝑃𝑠 −𝑃𝑠

∗
+ 𝐊𝑄,𝐼

𝑄2 −𝑄2
∗

⋮
𝑄𝑠 −𝑄𝑠

∗

𝑃𝑖 = 𝑃𝑔𝑖
+ 𝑃𝑙𝑖

, 𝑖 = 1, … , 𝑠

𝑄𝑖 = 𝑄𝑔𝑖
+ 𝑄𝑙𝑖

, 𝑖 = 1, … , 𝑠

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖

≤ 𝑃𝑔𝑖
𝑚𝑎𝑥, 𝑖 = 1, … , 𝑔

𝑄𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖

≤ 𝑄𝑔𝑖
𝑚𝑎𝑥, 𝑖 = 1, … , 𝑔

𝑉1 =1𝑝𝑢

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥, 𝑖 = 2, … , 𝑠

𝐼𝑖𝑗 ≤ 𝐼𝑖,𝑗
𝑚𝑎𝑥, 𝑖 ≠ 𝑗 = 1, … , 𝑠

The L-OPF contains also the constraints on the branch currents, it is 
linear and can be solved very efficiently. Voltage angles are missed.

26Linearized OPF



Outline

Introduction

The DC approximation

Linearized OPF

Sequential linear programming OPF



The main problem of the an approximated OPF (including the 
linearized one) is that the solution of the OPF does not strictly satisfies 
the load flow equations. Therefore, the constraints on nodal voltages 
and branch flows can still be violated if the OPF solution is 
implemented.

To overcome this limitation, one can implement this heuristic algorithm:

Sequential linear programming (SLP) OPF

1. start from the knowledge of the system state ഥ𝐕∗ 0(either from a 
state estimator or from a load flow solved with initial boundary 
conditions).

2. Do ℎ = 1…

3. Compute matrices 𝐊𝑃,𝑉
ℎ

, 𝐊𝑄,𝑉
ℎ

, 𝐊𝑃,𝐼
ℎ

, 𝐊𝑄,𝐼
ℎ
 as fcn of ഥ𝐕∗ ℎ−1

4. Solve the problem L-OPF to obtain the nodal power injections 𝐒
ℎ
 

5. Compute the load flow using the solution obtained from the L-OPF,

𝐒
ℎ
, to obtain a new system state ഥ𝐕∗ ℎ

6. Iterate until ഥ𝐕∗ ℎ − ഥ𝐕∗ ℎ−1 < 𝜀𝑉 and/or ത𝐒∗ ℎ − ത𝐒∗ ℎ−1 < 𝜀𝑆

28Sequential linear programming OPF



In summary, the SLP-OPF works as follows: at line 4 it computes a L-OPF 
and, since the L-OPF is convex, we get a global minimum of the L-OPF. 
However, the output of the L-OPF cannot exactly satisfy the load flow 
equations since the L-OPF relies on sensitivity coefficients.

Therefore, we compute at line 5 a new load flow using the L-OPF 
(optimally computed) nodal power injections to obtain a new state of 
the grid. This updated state is used to re-compute the sensitivities at 
line 3 and solve the L-OPF with a linearization that is closer to satisfy the 
load flow equations exactly.

This process is iterated until the convergence of the residuals 
computed for the nodal voltages and/or the nodal injected powers 
(line 6).

It is important to note that this process is heuristic in the sense that it 
does not necessarily achieve the global optimum of the non-
approximated original (and non-convex) OPF.

The user can decide to adopt the L-OPF or SLP-OPF as a function of 
the computation time associated to the two problems. In general, the 
L-OPF is more suitable for real-time control while the SLP-OPF for off-line 
computations.

29Sequential linear programming OPF
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