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INnfroduction n

The load flow equations written by means of the grid nodal model
defines a non-convex set of constraints for the OPF.

[1] = [Y][V] Kirchoff's laws (KVL and KCL) applied to the whole grid;
S_ VI nodal power injection Vi = 1, ..., s
15 =0 power balance over the whole grid.

Recall the load flow equations in polar coordinates

P=YVVY,cos(9,-9,-7,)

O, =Y VyY,sin(4-9,-7,)
or in rectangular coordinates

P = VZ(GV BV)+VZ(BV+G€ ) Vo=V +V"
3

O =-V X(BY +GV,)+VX(GV,-BY,)

.
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The DC approximation n

The non-convexity of the OPF constraints can be addressed by
replacing them with a set of approximated ones.

The simplest one is the DC-approximation we have already seen in
the module on the load flow.

IMPORTANT: any approximation of the OPF constraints implies that
the solution of the problem does not satisfy the load flow equations.
So, the violation of the constraints (may) still exist if we compute the
load flow from the obtained solution of the approximated OPF.



The DC approximation (ref. lecture 2.4) n

= For high voltage systems, the longitudinal resistances of the line conductors and
copper losses of transformers are neglected with respect to the series reactance of
the lines and transformers (note that this is not true in distribution systems).

o Acceptable when the calculation of losses is waived.

fz 10 for tfransmission lines,
o fz 50 for tfransformers

o Inboth cases z = jx
= The transverse admittances of the network components are neglected.

o The shunt capacitances of the lines generate reactive power especiadlly in long
lines at very high voltage;

o The currents flowing through the shunt capacitances are mainly associated to
the reactive power balance of the line and, in high voltage systems, they are
related to the difference of voltages magnitudes at the extremes of the lines.

o In high voltage systems, however, shunt capacitances have a little influence on
the active power flows that mainly depend on the differences between the
phases of the voltage phasors at the line ends.

o The shunt conductance, which take into account the corona and insulators
losses of the lines and the iron-losses transformers, may assumed small and, in the
DC approximation, negligible.

With these simplifications, the grid model is only composed by longitudinal inductive
reactances (i.e., the equivalent series reactance of lines and transformers).



The DC approximation (ref. lecture 2.4)

= V;,V; are the voltages phasors at the extremities
= g, is the argument of V; and 6, the argument of V, 8;; = 9, — 6,

= x;; the reactance of the branch il

In view of the above, the active power through the branch il is:
P = %sin 01
Xil
Further hypotheses of the DC approximation are the following:
= the modules of the nodal voltages all equal to 1 pu
= the difference 6; — 9, is small, therefore sin(9; — 6,) =~ 6; — 9;

Therefore, we have
P = 0
it =__06u
Xil
As a consequence, the injection of power in o genericcl nodeiis :
1
P; = z P, = _L ,_ﬁ
Xi
[#i LS

(note that the voltage angles are known up to one phase shift, so we need to take
one node, say k, asreference and set 6, = 0 o’r this node SO we have that:

1
p. = Z—e 239
SERS G
l:tl




The DC approximation (ref. lecture 2.4) n

The following linear matrix equation is obtained for the whole network:

[P] = [B] x 6]

where [B] and the “susceptance matrix” of the entire fransmission network (in pu).

As seen before, the diagonal terms B;; of [B] consist of the sum of the (longitudinal)
susceptance of all sides converging at the i-th node

The terms on the diagonal B;; are positive if the susceptance are inductive while the

other terms are all negative, provided that the susceptance are inductive, and meet
condition

Bix = By



The DC approximation n

Let’s apply the DC load flow approximation to our 3-bus examp

Cost function: ¥, 5 C; (B;,)

. : P, = 100 MW P, =100 MW
Decision variables:
- sz'Pgs'QE'—QE " Vi, = (375 —j22.2)pu .
Constraints: 1 2
= DC grid’s load flow equations 7o = (488 — 11D 7. = (488 — 1107
.~ Nodalvoll i i | I .
S, = 100MW
= Branches powers below max ; Vy = 220kV
. . 3
= Generators P™n" pMaX gnd QR _Qmax P, = 500 MW
pjrin, pmax 0 + 400 MW
Qg5 80——+60-Mia;
Cy,Cy, Cs 15,1,225 CHF /MWh

Smax gmax gmax 200,200,300 MW M4



The DC approximation m

Let’s apply the DC load flow approximation to our 3-bus examp

P, =100 MW P, =100 MW
P, =11.1(0; — 6;) + 11.1 (65 — 6,) g l
P1 =Pgl+Pll 71,2=(3-.-75—j22.2)pu
. 91 92
P3 = Pg3 + Pl3 171,3 = (488 —j11.1)pu 72,3 = (488 —j11.1)pu
3
. . . . Sy, = 100MW
If nodal injections (P, P,, P;) are given ; Vy = 220KV
3
?ch that P, + P, + P; = 0, we can solve P = 500 MW
or 6.

Let us set 8, = 0 (reference bus = slack bus).

The branch flows are derived from 6 as:
P, = 22.2 (—6,)
P, 3 = 11.1(—65)

P,; =11.1(6, — 65)



The DC approximation

The OPF with the DC approximation has linear constraints, so the

feasible set of the problem is convex, and a convex cost function. So, it
is a convex optimisation problem.

3
pmin ; C; (Fy,)

S.t.
P, =222 (—6,) + 11.1(—65)

Py=F, +P,
P, = F, + P,
P3 =F, + P,

PU™ < P, < PJMOX, i =1,2,3
—P*< 22.2 (0 — 6,) < P
—P¥™* < 11.1(0 — 65) < P’
—PJ¥*< 11.1(6; — 63) < PY™
—n<6;<mi=23

P, =100 MW P, =100 MW

Y12 = (—j22.2)pu

91 92

| 2
Y13 = (—j11.Dpu Y23 = (—j11.Dpu
3 S, = 100MW

V, = 220kV

93
Pl3 - 500 MW

LT, [P 0 + 400 MW
C1,Cy, C3 15,1,225 CHF /MWh
ST5A%, ST3AX, Sex 200,200,300 MW



The DC approximation

Solution
0, = 0 mrad 6, = —30.03 mrad
Ap, = 75.67 CHF /MW h Ap, = 1 CHF /MWh
P, = 400MW P,, = 233.33 MW
P, =100 MW P, =100 MW
1712 —(—]22 2)pu
91 P, = 66 67 MW 92
| 2
P, 5 = 233.33MW P,s = 200 MW
Y13 = (=j11.Dpu Yy3 = (—j11.D)pu
Total cost: 21233 CHF /h 20w

g3

P, =500 MW B
0; = —210.23 mrad

Ap, = 225 CHF /MW h
P,, = 66.67 MW

pjrn, pmax 0 + 400 MW
C1, Ca, Cs 15,1,225 CHF /MWh
STBex, SR, Syiax 200,200,300 MW



The DC approximation

Solution
6, =0 mrad 6, = +18.03 mrad
Ap, = 15 CHF /MWh Ap, = 15 CHF /MWh
B,, = 300MW B,, =400 MW
P, =100 MW P, =100 MW
1_/12 —(—]22 2)pu
91 P, = 66 67 MW 92
| 2
P, 3 = 233.33MW P,5 = 200 MW
Y13 = (—j11.Dpu Ya3 = (=j11.Dpu
Total cost: 13767 CHF /h 20w
93
P, = 500 MW
03 = —216.24 mrad
Ap, = 15 CHF /MW
P, = 0MW
pjmn, pmax 0 + 400 MW
l l
C1, C3, C3 15,1,225 CHF /MWh Lines power transmission limits

Sgax Sgax Smax 2000,2000,3000 MWW x10



The DC approximation m

From this numerical example, we can conclude that the DC OPF
problem produces results that are qualitatively like the solution of the
original non-convex AC-OPF (see lecture 4.1), with the main difference
that active power losses are neglected as well as voltage magnitudes
variations and reactive powers.

Remember that these considerations are valid for high voltage power
systems where the DC approximation may hold. In power distribution
systems (where the longitudinal impedance of branches is more
resistive than inductive), or in the case where reactive power flows
have to be considered along with voltage constraints, the DC-OPF
cannot be used.
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Linearized OPF n

Let us consider a grid with s buses where the slack is located at bus 1.
As always, we can express the generic power at busi as

j=1
Given that we have fixed the voltage at the slack
|71|=1pu, arg(Vl) =0

If we indicate with S = (55, ...,55) ,V = (V,, ..., V,) the amrays of power
injections (i.e., only PQ nodes compose the LF boundary conditions)
and voltages in all the nodes except the slack, we can write the load
flow problem in a compact form as follows:

ng(‘_/)r §1 :fl(‘_,)

where we compute (V,S;) when S is given (e.g. when we fix the nodal
power injections and slack voltage) from the numerical inversion of f.



Linearized OPF

Let us assume that we know the state of the system (for instance from

a state estimator). This means that we know V' for a given'S .
Therefore, we can express S in Taylor series truncated at the first order:

S=S +Vf (\7) (\7 —\7*)

where Vf (\7) is the Jacobian of f computedinV .

The above equation is (frivially) linear and can be used to
approximate the load flow non-convex consiraints and make them
convex.

IMPORTANT: remember that this approximation is accurate if S and
Vare closetoS and V.



Linearized OPF n

It is interesting to note that Vf (\7) Is composed by the partial
derivatives of the nodal power injections with respect to the nodal
voltages. In other words, Vf (\7) is the Jacobian of the Newton-
Raphson solution of the load flow problem.

Let’s write it for the case of polar coordinates.

_PZ_ -Pz*' —apz apz— _VZ _. VZ*—
p by oV, 00, v - v
QS =[S+ ¢ 0. _ o

2l |Qz| |ags 0Qs 27 72

0. 10 \_OVZ a0, v, — ;]

|
vr (V) =1(v", 6%



Linearized OPF n

By assuming that the load flow converges in the surrounding of the
state V' for a given S , we have that the the Jacobian Vf (\7) can be

inverted. Therefore, we can also express the nodal voltage variations
as a function of the variations of the nodal power injections:

_VZ _.Vz*_ —aPZ apz-—l _PZ ._PZ*_
- |_|%% % P, P
92 _ 9; a'QS aés Qz _ QS
6, — 0, | L0V, 00;. v*e% LQs — Qs

J71(v*, 6%)

Where the components of the inverted Jacobian J~1(V*, 8*) are those
that we have already computed in the lecture 2.4.



Linearized OPF

In the OPF there is the need to compute the active and reactive

powers at the slack (i.e., S; = £;(V)). This computation is rather simple
since

S S
§1 - P1 +]Q1 = Vl ZZXL = 2 VlI/le'jej(el_gj_yu)
j=1 j=1
S
P, = Z ViV;Y;cos(6, — 6; —vy)
j=1

S
01 = ) ViVi¥iysin(6; - 6; — yu)
j=1

where |V;|=1pu, arg(V;) =6, =0, or V; = (1 + jO )pu. Therefore, we got:

1, — V7

_apl apl_ ? ?

Pl <[] |2 " 08, V=V

@17l Moo, 0q 6, — 03
_aVZ o aHS_ E 3 * E

V26910, —0:.



Linearized OPF

Therefore, we can write the approximated linear OPF as follows m

m1n Z P Q
PgysPggsQgy» (gl gi
S.t
2] (P31 [P, oP,
pl (B, % . 0%
@i el |ags a0
_QS_ _Q;_ _aVZ 095_ (V*’B*) |
0P, 9P,
Pllz P{‘l+ av, T 08,
ol ~loil o, a0
v, " a6,

Pi=P,+P,i=1..,s
Qi = Qgi +Qli,i =1,..,s

PMm < P, < PMOY i=1,..,g
Qmm Qg Qmax i=1,..,9
|V1|=1pu, arg(Vl) =0,=0;
Vmin < |Vl| < Vmax:i =2,..,8

—-n<0;<mi=2,..,8

(v+,0%)

This is a linear (so, convex) OPF.

Note that in this approximated OPF
the constraints on the branch flows
are not included (see next slides how
to fix this problem).



Linearized OPF

We can derive a simpler version of the problem by observing that the
components of the inverted Jacobian J~1(V*, 8*) are those that we
have already computed in the lecture on the lecture 2.4 (we recall
that v is the set of PQ buses, H the set of slack buses and that
{1,2,..,s}=HUN, NN = Q).

aV; oV,

Li=0 =3p, Z U 3P,
JEHUN EN -~

Licg = N Ty, Y Ty
JL{i=1} = aQ gjvjiTr an

JEHUN JEN
From the above complex sensitivity coefficients, we can compute the nodal

voltage module sensitivities:
: 1 (v %
ok |7 \Trop

. ol 1 av;
Ky =——=— m(v-—‘)
’ 1T\ oQ

2 2
2 olv;l _ ON(VW) +(v")" 1

o +Y’)

Note that: V; = V/ + V", V| = J(V) + (),

0 d
1 (V, aVL + Vl” aV ) | | 1 ( ; SV )
(Vi’)2+(Vi”)2 i i Vi i




Linearized OPF m

It is interesting to note that the operational consiraints on the nodal

voltage refers to their modules: Vi < |Vi| < Vipax i = 2, .., .
Therefore, thanks to the sensitivity coefficients Kit = aalzil and KX = aalzil
l l

we may write the constraints on the voltage modules as follows:

4 P, —P;
: = [Kpy|| ¢ |+ [Kov]|
Ve =V P —F | |05 =05

Q, .—Qék_

Note that in the above equation there is a slight abuse of
nomenclature, where V; = |V;].



Linearized OPF m

Furthermore, from the knowledge of the complex voltage sensitivity

.. : . A av;
coefficients associated to the complex nodal voltages (i.e. a_pl and a—Q‘ ,
l l

we can easily derive the sensitivity coefficients for the branch currents

as follows.
Let’s express the branch current at bus i towards bus j of the generic

branch ij:

7i — [_/j
- - Y.
_ o _ _ _ S ,[ lj
I, =Y V+Y,(V,=V)) Zsr I
Therefore, we have: Y. Y.
i J
al;; — v, — [(aV; aV,
_U:YiL‘F Yl] al/l— / - =
0P, 0 oP, 0P
[. . 0 :




Linearized OPF m

From the complex sensitivity coefficients of the branch currents, we
can easily compute the sensitivity of the branch current modules os:

a1 ol;;
Kllz U:_ m<1_l]>
TR T \on

Lol 1 al;;
K"l — H = — %(I_U)
TR

and express the variations of the branch current modules as:

P; _PZ*_ Q2 _Q;_
L] =105 = [Kes] | 8 [+ [Ked]| ¢
_PS _PS*_ _Qs _Q;_

Where |1;;] is the vector of the branch currents modules and [I;;] the
same vector computed in correspondence of the state of the grid.



Linearized OPF m

Therefore, we can write the approximated linear OPF (L-OPF)as follows
3

min z Cy (Pgi’ Qgi)

PgysePgsQgorQqg £

=1
S. t. ]

Vo, = V3 P, —P; Q2 —Q3
: - [KP,V] + [KQ,V]
_VS_VS* _Ps _Ps* QS _Q;
_ |P2—P2 Q2 —Q3

1] = [17] = [Kp] 5 + Kol 5
Ps _Ps* Qs _Q;

Pi=P, +P,i=1,..,s

Q; = Qgi + Qli,i =1,..,S

PMn < p < PN =1,..,g

QN < Q, < QI i=1,..,g

|V1|=1pu

Vinin < Vi < Voo i = 2, 000, S

L <IM™i#j=1.,s

The L-OPF contains also the constraints on the branch currents, it is
linear and can be solved very efficiently. Voltage angles are missed.
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Sequential linear programming OPF m

The main problem of the an approximated OPF (including the
linearized one) is that the solution of the OPF does not strictly satisfies
the load flow equations. Therefore, the constraints on nodal voltages
and branch flows can still be violated if the OPF solution is
implemented.

To overcome this limitation, one can implement this heuristic algorithm:
Sequential linear programming (SLP) OPF

1.

o~ L

start from the knowledge of the system state [V*]° (either from @
state estimator or from a load flow solved with initial boundary
conditions).

Doh=1...
Compute matrices [Kp ], [Kov]" [Kei]" [Kos]" as fen of [V#]r-1

Solve the problem L-OPF to obtain the nodal power injections rs]h
Compute the load flow using the solution obtained from the L-OPF,
[S]", to obtain a new system state [V*]"

terate until ||[V*]* — [V*]*1|| < & and/or ||[S*]* — [S*]" Y| < &



Sequential linear programming OPF

In summary, the SLP-OPF works as follows: at line 4 it computes a L—;;PF
and, since the L-OPF is convex, we get a global minimum of the L-OPF.
However, the output of the L-OPF cannot exactly satisfy the load flow
equations since the L-OPF relies on sensitivity coefficients.

Therefore, we compute at line 5 a new load flow using the L-OPF
(optimally computed) nodal power injections to obtain a new state of
the grid. This updated state is used to re-compute the sensitivities at
ine 3 and solve the L-OPF with a linearization that is closer to satisfy the
load flow equations exactly.

This process is iterated until the convergence of the residuals
computed for the nodal voltages and/or the nodal injected powers
(line 6).

It is important to note that this process is heuristic in the sense that it
does not necessarily achieve the global optimum of the non-
approximated original (and non-convex) OPF.

The user can decide to adopt the L-OPF or SLP-OPF as a function of
the computation time associated to the two problems. In general, the
L-OPF is more suitable for real-time control while the SLP-OPF for off-line
computations.
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